
Jason Axelson

Choosing an Effective
Testing Structure

1

Practical tips for Elixir and Erlang engineers

Code BEAM 2025 - Choosing an Effective Testing Structure - Jason Axelson

About me

• Been using Elixir since 2016
• Libraries I help maintain:
 MainProxy, Scenic, ExSync, DataTracer, PasswordValidator
• Senior Software engineer at Felt

• Mastodon: @axelson@fosstodon.org

2

Me on the Internet

https://fosstodon.org/@axelson

Code BEAM 2025 - Choosing an Effective Testing Structure - Jason Axelson

Why talk about testing?

● Testing is an important piece of writing and especially
maintaining software

● I wish there were more talks about testing in practice

3

Code BEAM 2025 - Choosing an Effective Testing Structure - Jason Axelson

What are we talking about today?

4

Code BEAM 2025 - Jason Axelson

Warning! Opinions Ahead!

5

#CodeBEAM

Writing Tests

6

Code BEAM 2025 - Jason Axelson

Write tests to fail

7

Code BEAM 2025 - Choosing an Effective Testing Structure - Jason Axelson

WRITING TESTS

Write tests to fail

Consider this test

8

What happens when this test fails?

test "my test" do
 user = admin_user()
 attrs = %{name: "123"}
 changeset = MyApp.update_user(user, attrs)
 assert changeset.valid?
end

Code BEAM 2025 - Choosing an Effective Testing Structure - Jason Axelson

WRITING TESTS

Womp womp

9

Code BEAM 2025 - Choosing an Effective Testing Structure - Jason Axelson

WRITING TESTS

Write tests to fail

Consider this test

10

How can we rewrite this test for failure?

test "my test" do
 user = admin_user()
 attrs = %{name: "123"}
 changeset = MyApp.update_user(user, attrs)
 assert changeset.valid?
end

Code BEAM 2025 - Choosing an Effective Testing Structure - Jason Axelson

WRITING TESTS

Write tests to fail

test "my better test" do
 user = admin_user()
 attrs = %{name: "123"}
 changeset = MyApp.update_user(user, attrs)

 assert errors_on(changeset) == %{}
 assert changeset.valid?
end

11

Code BEAM 2025 - Choosing an Effective Testing Structure - Jason Axelson

WRITING TESTS

A successful failed test!

12

Code BEAM 2025 - Jason Axelson

Put expected values
on the right side of assertions

13

Code BEAM 2025 - Choosing an Effective Testing Structure - Jason Axelson

WRITING TESTS

Put expected values on the right side of assertions

`assert actual == expected`

14

actual = MyApp.calc(2, 2)
assert actual == 4

● Consistent pattern helps readability

● Read the test from top to bottom, left to right

Code BEAM 2025 - Choosing an Effective Testing Structure - Jason Axelson

WRITING TESTS

Put expected values on the right side of assertions

test "bad" do
 post = create_post(%{name: "on testing"})
 post_id = post.id

 assert {:ok, %{id: ^post_id, name: "on
testing", author: "joe"}} =
 MyApp.fetch_last_post()
end

15

Code BEAM 2025 - Choosing an Effective Testing Structure - Jason Axelson

WRITING TESTS

Put expected values on the right side of assertions

test "better" do

 post = create_post(%{name: "on testing"})

 assert MyApp.fetch_last_post() ==

 {:ok, %Post{id: post.id, name: "on

testing", author: "joe"}}

end

16

Code BEAM 2025 - Choosing an Effective Testing Structure - Jason Axelson

WRITING TESTS

Assertions with Machete

Machete github.com/mtrudel/machete

test "with machete" do
 post = create_post(%{name: "on testing"})

 assert MyApp.fetch_last_post() ~>
 {:ok, superset(%{name: "on testing"})}
end

17

https://github.com/mtrudel/machete

Code BEAM 2025 - Choosing an Effective Testing Structure - Jason Axelson

WRITING TESTS

Machete

Machete allows you to:
● Keep your assertions on the right-hand side

● Not need intermediate values just for pattern matching

● Use flexible matchers like
○ `integer(min: 10, max: 25)`

○ `string(matches: ~r/abc/)`

○ `json(%{a: 1})`

18

Code BEAM 2025 - Jason Axelson 19

Use async tests

Code BEAM 2025 - Choosing an Effective Testing Structure - Jason Axelson

WRITING TESTS

Why write async tests?

● Faster test suite execution

● It helps ensure that you understand your system

● Catch race conditions

● It's… fun?

20

Code BEAM 2025 - Choosing an Effective Testing Structure - Jason Axelson

WRITING TESTS

What prevents async tests?

● Forgetting to add `async: true` to your tests

● Modifying global state
○ Application environment

○ ETS

○ Database

○ Process registry

○ plus many others!

21

Code BEAM 2025 - Choosing an Effective Testing Structure - Jason Axelson

WRITING TESTS

Bypass library

test "client can handle an error response" do
 bypass = Bypass.open()

 Bypass.expect_once(bypass, "POST", "/", fn conn ->
 Plug.Conn.resp(conn, 429, "Rate limit exceeded")
 end)

 assert HttpClient.post("http://localhost:#{bypass.port}/", "Hello World!") ==
 {:error, :rate_limited}
 end

22

github.com/PSPDFKit-labs/bypass
allows you to mock an HTTP server and return prebaked responses

https://github.com/PSPDFKit-labs/bypass/

Code BEAM 2025 - Choosing an Effective Testing Structure - Jason Axelson

WRITING TESTS

Dealing with the Application environment

How would you test this code using a bypass server?

23

You can't use `Application.put_env/2` because it modifies global state

def send_http_request(path, body) do
 base_url = Application.get_env(:my_app, :base_url)

 Req.post(base_url <> path, body)
end

Code BEAM 2025 - Choosing an Effective Testing Structure - Jason Axelson

WRITING TESTS

Dealing with the Application environment

Add a parameter to pass in the base_url

24

But what if this function is called deep within your code?

def send_http_request(path, body, base_url \\ nil) do
 base_url = base_url || Application.get_env(:my_app, :base_url)

 Req.post(base_url <> path, body)
end

That works…

Code BEAM 2025 - Choosing an Effective Testing Structure - Jason Axelson

WRITING TESTS

Enter ProcessTree

github.com/jbsf2/process-tree
A library for avoiding global state in Elixir applications

25

https://github.com/jbsf2/process-tree

Code BEAM 2025 - Choosing an Effective Testing Structure - Jason Axelson

WRITING TESTS

ProcessTree

ProcessTree lets you mimic the Application Environment
● It looks up values in the Process dictionary of the current

process
● Then in any `$ancestors`

● Then in any `$callers`

26

Code BEAM 2025 - Choosing an Effective Testing Structure - Jason Axelson

WRITING TESTS

ProcessTree

def send_http_request(path, body) do
 base_url = ProcessTree.get(:base_url, @default_base_url)
 Req.post(base_url <> path, body)
end

test "with process tree" do
 bypass = Bypass.open()
 Process.put(:base_url, "http://localhost:#{bypass.port}")
 MyApp.send_http_request("/register", "abc")
end

27

Code BEAM 2025 - Choosing an Effective Testing Structure - Jason Axelson

WRITING TESTS

ProcessTree wrapper

defmodule AppEnv do
 if Mix.env() == :test do
 def get(key) do
 ProcessTree.get(key, default_value(key))
 end
 else
 def get(key), do: default_value(key)
 end

 if Mix.env() == :test do
 def put(key, value), do: Process.put(key, value)
 end

 defp default_value(key), do: Application.get_env(:my_app, key)
end

28

Code BEAM 2025 - Choosing an Effective Testing Structure - Jason Axelson

WRITING TESTS

Verify your tests by changing code

● If you modify your code to have bugs, does your test
suite fail?
○ If not, then you're missing a test

● This is formalized in an approach called mutation testing
○ https://devonestes.com/announcing_muzak

29

Hat tip to Jeffrey Matthias for the idea!

https://devonestes.com/announcing_muzak

Code BEAM 2025 - Choosing an Effective Testing Structure - Jason Axelson

WRITING TESTS

Tip: Don't depend on factories

● Write your tests to not implicitly depend on factories
○ Makes your tests more reliable

● Otherwise changes to the factory could break unrelated
tests

30

Code BEAM 2025 - Choosing an Effective Testing Structure - Jason Axelson

WRITING TESTS

Tip: Don't depend on factories

test "bad" do
 user = create_user(age: 25)

 assert {:ok, updated_user} =
 MyApp.update_user(user, age: 30)

 assert updated_user == %User{
 name: "Joe",
 age: 30
 }
end

31

Code BEAM 2025 - Choosing an Effective Testing Structure - Jason Axelson

WRITING TESTS

Tip: Don't depend on factories

test "good" do
 user = create_user(age: 25)

 assert {:ok, updated_user} =
 MyApp.update_user(user, age: 30)

 assert updated_user.age == 30
end

32

Faker can help catch this github.com/elixirs/faker

https://github.com/elixirs/faker

Code BEAM 2025 - Choosing an Effective Testing Structure - Jason Axelson

WRITING TESTS

Tip: Use @tmp_dir tag

ExUnit gives you an `@tag :tmp_dir`

33

Hat tip to Lars Wikman for the reminder!

@tag :tmp_dir
test "Use temp directory", %{tmp_dir: tmp_dir} do
 assert File.dir?(tmp_dir) == true
end

Directory is cleared before every test

Code BEAM 2025 - Choosing an Effective Testing Structure - Jason Axelson

WRITING TESTS

Tip: Use custom tags for in setup blocks

@tag admin?: true
test "admins can delete posts", %{user: admin} do
 ...
 assert can_delete?(post, admin) == true
end

@tag admin?: false
test "non-admins cannot delete posts", %{user: user} do
 ...
 assert can_delete?(post, user) == false
end

34

Code BEAM 2025 - Choosing an Effective Testing Structure - Jason Axelson

WRITING TESTS

Tip: Use custom tags in setup blocks

setup context do

 admin? = context[:admin?]

 user = create_user(%{}, admin?: admin?)

 %{user: user}

end

@tag admin?: true
test "admins can delete posts", %{user: admin} do
 ...
end

35

Recommendation: use sparingly (and only for the primary entity)

Code BEAM 2025 - Choosing an Effective Testing Structure - Jason Axelson

WRITING TESTS

Given / When / Then

test "example" do

 # GIVEN an admin user

 {user, team} = {create_user(), create_team()}

 create_team_member(team: team, user: user, role: :admin)

 post = create_post(user: create_user())

 # WHEN they update other's posts

 assert {:ok, updated_post} = Blog.update_post(post, user: user, name: "new name")

 # THEN the update succeed

 assert updated_post.name == "new name"

end

36martinfowler.com/bliki/GivenWhenThen.html

https://martinfowler.com/bliki/GivenWhenThen.html

Code BEAM 2025 - Choosing an Effective Testing Structure - Jason Axelson

WRITING TESTS

Given / When / Then

test "example" do

 {user, team} = {create_user(), create_team()}

 create_team_member(team: team, user: user, role: :admin)

 post = create_post(user: create_user())

 assert {:ok, updated_post} = Blog.update_post(post, user: user, name: "new

name")

 assert updated_post.name == "new name"

end

37martinfowler.com/bliki/GivenWhenThen.html

Empty lines

https://martinfowler.com/bliki/GivenWhenThen.html

#CodeBEAM

Running your tests

38

Code BEAM 2025 - Choosing an Effective Testing Structure - Jason Axelson

RUNNING YOUR TESTS

mix test.watch

● github.com/lpil/mix-test.watch

● Allows you to run `mix test.watch [pattern]`
○ When you change your source code, the test re-runs

○ "It just works!" -someone probably

39

https://github.com/lpil/mix-test.watch

Code BEAM 2025 - Choosing an Effective Testing Structure - Jason Axelson

RUNNING YOUR TESTS

ExUnitSpan visualizes your test suite timing

ExUnitSpan github.com/ananthakumaran/ex_unit_span
Produces a trace of your tests, helps to visualize test concurrency

40

First 4 processes finish in ~2 seconds

Last process finishes in ~22 seconds

https://github.com/ananthakumaran/ex_unit_span?tab=readme-ov-file

Code BEAM 2025 - Choosing an Effective Testing Structure - Jason Axelson

RUNNING YOUR TESTS

Run tests from your editor

● There's many extensions for this
○ Emacs: github.com/ananthakumaran/exunit.el

○ Vim: github.com/vim-test/vim-test

○ VSCode: github.com/samuelpordeus/vscode-elixir-test

● It saves time over copying the file name and line
numbers manually

41

https://github.com/ananthakumaran/exunit.el
https://github.com/vim-test/vim-test
https://github.com/samuelpordeus/vscode-elixir-test

Code BEAM 2025 - Choosing an Effective Testing Structure - Jason Axelson

RUNNING YOUR TESTS

Tip: Run a specific single test

● There's two ways to run a single test

● Option 1: by line number
○ `mix test test/some_test.exs:12`

○ This runs only the test on line 12

42

Code BEAM 2025 - Choosing an Effective Testing Structure - Jason Axelson

RUNNING YOUR TESTS

Tip: Run a specific single test

● Option 2: by test name
○ given this test:

test "admins can delete others posts" do
 ...
end

43

tag test name

○ run `mix test --only 'test:test admins can delete others posts'`

#CodeBEAM

Anti-patterns in Testing

44

⚠ Even more opinions ahead! ⚠

Code BEAM 2025 - Jason Axelson

Anti-patterns in Testing

⚠ Opinions ahead! ⚠

45

Code BEAM 2025 - Choosing an Effective Testing Structure - Jason Axelson

ANTI-PATTERNS

Slavishly chasing 100% test coverage

● Aiming for 100% test coverage encourages the wrong
behaviors
○ The aim becomes test coverage instead of effective tests

○ Your test suite becomes brittle

46

Code BEAM 2025 - Choosing an Effective Testing Structure - Jason Axelson

ANTI-PATTERNS

1 Assertion Per Test (1APT)

1APT is when every test case includes exactly one assertion

47

Code BEAM 2025 - Choosing an Effective Testing Structure - Jason Axelson

ANTI-PATTERNS

1 Assertion Per Test (1APT)

test "logs the user out and redirects to /", %{conn: conn, user: user} do

 conn = conn |> log_in_user(user) |> delete(~p"session")

 assert redirected_to(conn) == "/"

end

test "logs the user out and removes the token", %{conn: conn, user: user} do

 conn = conn |> log_in_user(user) |> delete(~p"session")

 refute get_session(conn, :user_token)

end

test "logs the user out and shows a flash message", %{conn: conn, user: user} do

 conn = conn |> log_in_user(user) |> delete(~p"session")

 assert get_flash(conn, :info) =~ "Logged out successfully"

end

48

Code BEAM 2025 - Choosing an Effective Testing Structure - Jason Axelson

ANTI-PATTERNS

1 Assertion Per Test (1APT)

Instead you can write it in a single test

49

test "logs the user out", %{conn: conn, user: user} do
 conn = conn |> log_in_user(user) |> delete(~p"session")

 assert redirected_to(conn) == "/"
 refute get_session(conn, :user_token)
 assert get_flash(conn, :info) =~ "Logged out successfully"
end

Code BEAM 2025 - Choosing an Effective Testing Structure - Jason Axelson

ANTI-PATTERNS

Using meck-based libraries

● Meck-based libraries:
○ meck, mock, patch, espec

● Meck works by replacing modules

● Not `async: true` friendly

● Replacing some modules creates very hard to track
down bugs in the test suite

50

#CodeBEAM

Testing Libraries to be aware of

51

Code BEAM 2025 - Choosing an Effective Testing Structure - Jason Axelson

LIBRARIES

Previously mentioned

● Bypass github.com/PSPDFKit-labs/bypass

● ProcessTree github.com/jbsf2/process-tree

● Machete github.com/mtrudel/machete

● mix test.watch github.com/lpil/mix-test.watch

52

https://github.com/PSPDFKit-labs/bypass/
https://github.com/jbsf2/process-tree/
https://github.com/mtrudel/machete
https://github.com/lpil/mix-test.watch

Code BEAM 2025 - Choosing an Effective Testing Structure - Jason Axelson

LIBRARIES

Parameterized Test

ParameterizedTest github.com/s3cur3/parameterized_test

Create test cases from markdown (or json) tables

53

https://github.com/s3cur3/parameterized_test/

Code BEAM 2025 - Choosing an Effective Testing Structure - Jason Axelson

LIBRARIES

Instead of writing three separate tests:
test "editors can view and edit" do

 user = create_user(:editor)

 assert Posts.can_view?(user) == true

 assert Posts.can_edit?(user) == true

end

test "viewers can view but not edit" do

 user = create_user(:viewer)

 ...

end

test "anonymous viewers cannot view or edit" do

 ...

end

54

Parameterized Test

Code BEAM 2025 - Choosing an Effective Testing Structure - Jason Axelson

LIBRARIES

param_test "users with editor permissions or better can edit posts",
 """
 | permissions | can_view? | can_edit? |
 |-------------|-----------|-----------|
 | :editor | true | true |
 | :viewer | true | false |
 | nil | false | false |
 """,
 %{permissions: permissions, can_edit?: can_edit?, can_view?: can_view?}
do
 user = create_user_with_permission(permissions)
 assert Posts.can_view?(user) == can_view?
 assert Posts.can_edit?(user) == can_edit?
end

55

Parameterized Test

Code BEAM 2025 - Choosing an Effective Testing Structure - Jason Axelson

LIBRARIES

Mneme

Mneme github.com/zachallaun/mneme
Snapshot testing library that helps write and update your
assertions

56

test "mneme example" do
 auto_assert my_function()
end

https://github.com/zachallaun/mneme

Code BEAM 2025 - Choosing an Effective Testing Structure - Jason Axelson

LIBRARIES

Mneme Example

$ mix test
[1] New · test basic example (MnemeTest)
test/mneme_test.exs:10

──
 - auto_assert my_function()
──
 + auto_assert %MyAwesomeValue{so: :cool} <- my_function()
──

Accept new assertion?
y yes n no s skip

57

y

Code BEAM 2025 - Choosing an Effective Testing Structure - Jason Axelson

LIBRARIES

Mneme Example

Your new test:

58

test "mneme example" do

 auto_assert %MyAwesomeValue{so: :cool} <- my_function()

end

Code BEAM 2025 - Choosing an Effective Testing Structure - Jason Axelson

LIBRARIES

● Fancy testing technique ✨
● You no longer write test cases individually

● Generates random test data to verify code properties

● Discovers edge cases example based tests might miss

59

Property Based Testing

Code BEAM 2025 - Choosing an Effective Testing Structure - Jason Axelson

LIBRARIES

● Libraries:
○ Erlang: PropEr

○ Elixir: StreamData

60

Property Based Testing

property "list reversing twice returns original list" do
 check all list <- list_of(integer()) do
 assert Enum.reverse(Enum.reverse(list)) == list
 end
end

#CodeBEAM

Thank you!

61

Code BEAM 2025 - Jason Axelson

Any Questions?

62

